Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(9*(x^2-(2*x)-6)^4)'The calculation above is a derivative of the function f (x)
(9)'*(x^2-(2*x)-6)^4+9*((x^2-(2*x)-6)^4)'
0*(x^2-(2*x)-6)^4+9*((x^2-(2*x)-6)^4)'
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(x^2-(2*x)-6)'
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*((x^2-(2*x))'+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*((x^2)'+(-(2*x))'+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*((-(2*x))'+2*x^(2-1)+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(2*(x)'+2*x+(2)'*x+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(2*(x)'+2*x+0*x+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(2*x+0*x+2*1+(-6)')
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(2*x-2+0)
0*(x^2-(2*x)-6)^4+9*4*(x^2-(2*x)-6)^(4-1)*(2*x-2)
0*(x^2-(2*x)-6)^4+9*4*(x^2-2*x-6)^3*(2*x-2)
36*(x^2-(2*x)-6)^3*(2*x-2)
| Derivative of -5+4x^2/-x+5 | | Derivative of (4*e^(2x))-4*sin(2x) | | Derivative of (Ln(x))^(1/3) | | Derivative of Ln(x)^1/3 | | Derivative of (1+x)/(2-x) | | Derivative of 1+x/2-x | | Derivative of 3a+4-a | | Derivative of 12(2-0.8^x) | | Derivative of 2-0.8^x | | Derivative of ln(x+(x^2+1)^0.5) | | Derivative of -8sin(x) | | Derivative of -8sin(x)*cos(x) | | Derivative of (ln(0.996)/30) | | Derivative of 2^547 | | Derivative of 3x^5-20x^3 | | Derivative of 3ln(2x-1) | | Derivative of 7*cos(2x) | | Derivative of 7*cos(3x) | | Derivative of 4(a+b) | | Derivative of (11*(x^2+2)-(22*x^2))/((x^2+2)^2) | | Derivative of 10e^-t | | Derivative of -(2/5)cos(5x-pi/2) | | Derivative of x/((x+2)^(1/2)) | | Derivative of e^(13-x+x^2) | | Derivative of (e^8x)/(e^(1/9)) | | Derivative of sin(2x^8) | | Derivative of 5^x^2 | | Derivative of 2k^0.5 | | Derivative of (ln(tan(x))) | | Derivative of (ln(cos(x))) | | Derivative of ln(0.996) | | Derivative of ln(0.996)/30 |